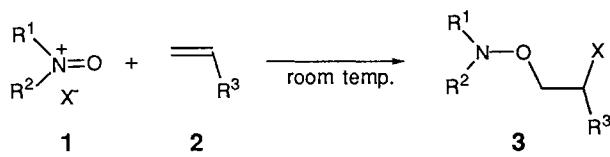


Electrophilic 1,2-Addition of Oxoammonium Salts to Olefins

Toshikazu Takata,[†] Yasunori Tsujino,[†] Saburo Nakanishi,[†] Kazuaki Nakamura, Eri Yoshida, and Takeshi Endo*


Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku Yokohama 226-8503

[†]Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8531

(Received May 31, 1999; CL-990461)

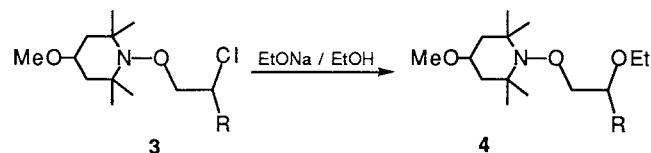
A new reaction of oxoammonium salt is demonstrated. Addition of oxoammonium salts (**1**) to electron-rich olefins (**2**) such as vinyl ethers and enamines rapidly proceeded to give corresponding 1,2-adducts (**3**) in high yields. The adducts **3** formed were further transformed by treatment with sodium ethoxide to isolable substitution products (**4**) in one pot reaction.

Oxoammonium salts (**1**) which are commonly prepared by one-electron oxidation of corresponding stable nitroxyl radicals are often utilized as excellent one or two electron oxidants for a variety of substrates such as alcohols, diols, hydroxide ion, benzyl ethers, and tertiary amines.¹⁻³ Electrophilic reactivity of **1** accompanied by O-C bond formation is confirmed only by Golubev *et al.* in the reaction with a Grignard reagent.⁴ As our study on nitroxyl radical and related redox species,^{1,5} we previously reported that **1** having low nucleophilic counteranions can serve as an initiator for cationic polymerization of vinyl monomers.⁶ To investigate the electrophilic nature of **1** is of significance from viewpoint of not only clarification of the reactivity but also transformation or synthetic use of **1**. We have recently found a new O-C bond forming reaction of **1**, i.e. addition to C=C bond. This paper describes selective 1,2-addition of **1** with nucleophilic counteranion to electron-rich olefins affording corresponding alkoxyamines.

To a solution of isobutyl vinyl ether (**2a**, 0.18 mmol) in CDCl₃ (0.5 mL) in a flask was added 4-methoxy-1-oxo-2,2,6,6-tetramethylpiperidinium chloride **1a**⁷ (0.20 mmol) at room temperature. ¹H NMR spectrum of the mixture measured just after the addition suggested the formation of the adduct (**3a**). The structure of **3a** was established by the derivation to the stable acetal which is mentioned later, in addition to the spectral data (IR and ¹H NMR)⁸. In the ¹H NMR was observed a characteristic triplet signal at 5.60 ppm assignable to the chloromethine proton. The yield of **3a** was 89% from the ¹H NMR using benzene as internal standard (run 1, Table 1).

A variety of electron-rich olefins similarly reacted with **1a** (Table 1). Besides **2a**, vinyl ethers (**2b**, **2c**) including cyclic one, enamide (**2e**), and a few styrene derivatives (**2g** ~ **2i**) were converted to the corresponding *N*-alkoxypiperidine derivatives (**3**) in 50 ~ 97% yield. In the case of enamine (**2d**), adduct **3d** was obtained in 94% yield by the reaction at -20 °C, whereas no adduct was obtained at room temperature. Little adduct was

formed from styrene, alkyl group-substituted ethylenes, and enol silyl ether. Inspection of the data of Table 1 seems to reveal that the yield of **3** depends on stability of carbocationic species formed by the initial attack of C=C bond at oxygen atom of **1a**. Use of excess amount of olefins (5 eq.) resulted in a certain yield increase and in quantitative yields of the adducts in a few cases (runs 2, 4, and 6).⁹


Table 1. Reaction of **1a** with various olefins **2**^a

Run	Olefin (2)	Time / min	Yield (3) / %
1		5	89
2		3	96 ^b
3		5	80
4		3	97 ^b
5		5	82
6		3	95 ^b
7		3	94 ^c
8		15	79
9		5	56
10		5	61 ^b
11		5	60 ^d
12		30	50
13		5	50 ^d
14		5	54 ^b

^aReaction conditions: solvent CHCl₃; room temperature; molar ratio **1** : **2** = 1.1 : 1.0. Yield of **3** was determined by ¹H NMR. ^bMolar ratio **1** : **2** = 1 : 5. ^cReaction at -20 °C. ^dIsomer ratio was not determined.

The isolation of **3** was usually difficult by chromatography, because **3** was fairly unstable α -chloro ethers or related species. However, relatively stable **3c** could be isolated as follows: the reaction mixture was concentrated by evaporation and the residue was carefully chromatographed on amine-treated silica gel (eluent: chloroform) to yield **3c** as colorless oil (30% yield as pure part). The *cis* : *trans* ratio was 1 : 4 by the ¹H NMR.

To demonstrate the reactivity of **3** and to determine the structure of **3**, successive treatment with sodium ethoxide in one-pot reaction was carried out to afford substitution products **4** in good yields. Namely, to the reaction mixture of **1a** and **2a** (0.91 eq.) was added ethanolic sodium ethoxide (2.0 eq.) at 5 °C. The product purified by preparative HPLC was acetal **4aa** (73% yield) of which structure was established by the spectral and analytical data.¹⁰

Reactivity of several oxoammonium salts (**1a** ~ **1f**)^{5,11} were examined to find the effect of the structure of **1**. The results are listed in Table 2. Somewhat stable **1a** and **1b** similarly afforded the corresponding adducts in good yields independent of the structure of olefins (**2a** ~ **2c**). Although stable oxoammonium salts were not obtained, both **1c** and **1d** formed in situ from nitroxyl radicals and gaseous chlorine also reacted to produce the adducts **4**.

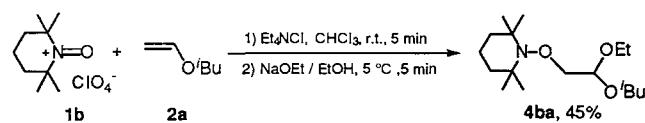

Since oxoammonium salts **1** with low nucleophilic

Table 2. Electrophilic addition of several **1** to selected olefins

Run	Oxoammonium Salt 1 ^a	Reactn. Condtn. with Yield of 4	Reactn. Condtn. ^b	2a ^b	2b ^b	2c ^b	NaOEt ^b	% ^c
1		1a	C			E		90 ^d
2		1a	C			E		73
3		1a	C			E		77
4		1a			C	E		69
5		1b	C			E		97
6		1b	C			E		63
7		1b	C			E		57
8		(A) 1c	C			E		43
9		(A) 1c	C			E		65
10		(A) 1c	C		C	E		46
11		(A) 1d	C			E		9
12		(B) 1d	D			F		42
13		(B) 1d	D		D	F		54
14		(B) 1d	D		D	F		44
15		(G) 1e	—e		—e	—e	0 ^e	

^aBoth **1c** and **1d** were prepared in situ by the reaction of nitroxyl radicals with equimolar amount of gaseous chlorine. ^bReaction conditions. A: CHCl₃, rt, 5 min. B: CHCl₃, -40 °C, 5 min. C: CHCl₃, rt, 5 min. D: CHCl₃, -40 °C, 5 min. E: EtOH, 5 °C, 5 min. F: EtOH, -40 °C, 5 min. G: CCl₄, rt, 5 min. ^cIsolated yield by column chromatography on silica gel. ^dExcess olefin **2** (10 eq.) was used. ^eFormation of **1e** was not confirmed.

counteranion are stable and easy to prepare,^{5,11} it is desired to apply such oxoammonium salts directly to the addition reaction. Thus, the addition of **1** with low nucleophilic counteranion to **2** was employed in the presence of highly nucleophilic counteranion such as chloride ion. As depicted in the following equation, the adduct **4ba** was obtained in 45% yield, probably by overcoming the competitive polymerization of **2a**.⁶ However, *N*-oxo-bis(2,4-dimethoxyphenyl)ammonium perchlorate (**1f**) hardly afforded corresponding adduct under the same conditions.

In this paper we have demonstrated a new reaction of oxoammonium salts (**1**) which undergo the electrophilic 1,2-addition to olefins to yield corresponding adducts *N*-alkoxyamines (**3**). The adducts further reacted with sodium ethoxide to give the stable substitution products (**4**) in one-pot reaction. The reaction can be regarded to have potential utility¹² as olefin functionalization, since alkoxyamine N-O bond is cleaved by zinc reagent system.¹³

References and Notes

- Reviews see: M.Yamaguchi, T.Miyazawa, T.Takata, and T. Endo, *Pure Appl. Chem.*, **62**, 217 (1990); T. Endo and T. Miyazawa, *Yuki Gosei Kagaku Kyokaishi*, **44**, 1134 (1986); J.M.Bobbitt and M.C.L.Flores, *Heterocycles*, **27**, 509 (1988).
- M.Yamaguchi, T.Takata, and T. Endo, *Tetrahedron Lett.*, **29**, 5671 (1988); M.Yamaguchi, T.Takata, and T. Endo, *J. Org. Chem.*, **55**, 1490 (1990); J.M.Bobbitt, *J. Org. Chem.*, **63**, 9367 (1998) and references cited therein.
- T.Miyazawa and T. Endo, *J. Org. Chem.*, **50**, 3930 (1985).
- V.A.Golubev and E.V.Kobylyanskii, *J. Org. Chem. USSR*, **8**, 2657 (1972); V.I.Rozenberg, V.K.Piotrovskii, V.A.Golubev, K.I.Gron, V.A.Nikanorov, Yu.G.Bundel, and O.A.Reutov, *Bull. Akad. Sci. USSR, Chem. Ser.*, **24**, 2508 (1975).
- For examples: E.Yoshida, T.Takata, T. Endo, T.Ishizone, A.Hirao, and S.Nakahama, *Chem. Lett.*, **1994**, 1827; E.Yoshida, T.Ishizone, A.Hirao, S.Nakahama, T.Takata, and T. Endo, *Macromolecules*, **27**, 3119 (1994); E.Yoshida, T.Takata, and T. Endo, *Macromolecules*, **26**, 554 (1993); E.Yoshida, T.Takata, and T. Endo, *Macromolecules*, **25**, 7282 (1992).
- E.Yoshida, K.Nakamura, T.Takata, and T. Endo, *J. Polym. Sci., Part A: Polym. Chem.*, **31**, 1505 (1993).
- T.Miyazawa, T. Endo, S.Shiihashi, and M.Okawara, *J. Org. Chem.*, **50**, 1332 (1985).
- Spectral data of **3a**. IR (NaCl, cm⁻¹) 2957, 2876 (C-H), 1387(N-O), 1097, 1028(C-O); ¹H NMR (60 MHz, CDCl₃) δ 5.60 (t, 1H), 4.13 (d, 2H), 3.35 (d, 2H), 3.28 (s, 3H), 3.80 ~ 2.90 (m, 1H), 2.00 (d, 2H), 1.76 (d, 2H), 1.62 (m, 1H), 1.27 (s, 6H), 1.20 (s, 6H), 0.93 (d, 6H).
- This result agrees with that the addition reaction is competitive with the decomposition of **1a**, since **1a** decomposes slowly under the conditions.²
- Spectral and analytical data of **4aa**. IR (NaCl, cm⁻¹) 2974, 2820, 1469, 1375, 1099, 1074; ¹H NMR (90 MHz, CDCl₃) δ 4.59 (t, 1H, J=5.4 Hz), 3.84 (d, 2H, J=5.4 Hz), 3.75 ~ 3.15 (m, 5H), 3.31 (s, 3H), 2.00 ~ 1.00 (m, 8H), 1.23 (s, 6H), 1.15 (s, 6H), 0.93 (d, 6H, J= 6.7 Hz); ¹³C NMR (22.4 MHz, CDCl₃) δ 100.9, 78.1, 73.9, 71.8, 62.2, 60.0, 55.7, 44.7, 33.2, 28.7, 21.0, 19.4, 15.4; Anal. Found: C, 65.03; H, 11.25; N, 4.47%. Calcd for C₁₈H₃₇NO₄: C, 65.21; H, 11.25; N, 4.23%.
- E.G.Rozantsev, "Free Nitroxyl Radicals," ed by H.Ulrich, Plenum Press, New York (1970).
- For example, K.Saigo, K.Kudo, Y.Hashimoto, H.Kimoto, and M.Hasegawa, *Chem. Lett.*, **1990**, 941.
- Y.Shishido and C.Kobayashi, *J. Org. Chem.*, **57**, 2876 (1992).